益必须要付出很大的代价。很显然,这种做法是不可行的。
30、对于TN型液晶,还有一种做法就是用一种成为负极性延迟薄膜的物质贴在液晶层的下面。这样就可以增大视角。加上这种称为延迟器的补偿薄膜,它是具有双折射性质的材料,它相对液晶来说是负极性的,会将偏转面向相反的方向旋转。
这样就增大了视角。这种方法应用于15英寸和17英寸的显示器上。因为补偿膜是负极性而液晶是正极性的,将它们叠加后改变了双折射。但这种调制双折射的方法,对于灰阶的视角扩展的作用相对还是比较窄的。
31、32、33、我们要使接近黑色的灰阶的视角扩展,这样可以有效的提高显示器的对比度,这种方法对于17英寸的显示器来说,具有很好的性价比。
但是对于大屏幕的显示器和液晶电视来说,这种方法就不合适了。而另外两种解决这个问题的方法已经发展起来了。
其中之一就是IPS模式,IPS模式不同于TN型液晶。在这种模式中,所有的液晶分子都指向同一个方向。这个方向与一边的偏光片的方向平行而与另一边偏光片的方向垂直。
在这种模式下,与TN型不同之处,液晶分子始终都是平行于偏光片的,所以称为平面控制模式。当施加了一个平面电场后,就可以使偏振面也就是液晶分子在一条带中旋转,所以在右手旋转这一边所施加的电场要更强烈一些。这样就可以使下半部分的液晶分子由稳态旋转90°到垂直态;而上半部分由垂直态旋转90°回到稳态。这样,上下两部分将会相互补偿。本质上,我们所做的就是让上下两半部分精确的相互补偿。
IPS模式理论上在各级灰阶下对通过液晶的光波都进行了补偿,是一种本质上的修正方法。但是,这种方法也有缺陷,因为它可以实现,所以就多讨论一下。
理论上,理想化的平面控制模式材料可以完全补偿光学路径。我们先来看看IPS模式的制造技术。如图所示,左右两个电极是排列在液晶的同一侧的。当没有施加电场时,所有的分子都指向同一个方向。当在两个电极间施加了电场之后,你所看到的就是之前那幅图中实施所示的,液晶的排列分为上下两部分。
34、但因为电极是排列在同一侧的,就会带来一些损失。由于电极是不透明的,所以电极部分就不能够透过光。这样,就会影响到开口率。如果想得到同样的亮度,就需要更亮的背光灯。35、另外一种宽视角技术称为垂直取向技术。
自始至终我都谈到过液晶分子的长轴方向的偏振要好于短轴方向。但是,有可能使液晶的短轴方向的偏振好于长轴方向,这种称为垂直取向。
36、如果具有了垂直取向的液晶,就可以制造出具有商业价值的产品,具有不同变量的MVA模式。我们需要做的就是让所有的分子站立起来。在静止状态下,使双折射参数中较低的那个的方向(长轴)平行于光波方向。这样就使分子站立起来,使它具有不同的垂直特性。当然,我们需要使它具有一定的预倾角,以使它能够在电场中旋转。
说到这里,你应该对这种负极性各向异性介质有了一定的认识。之所以称为各向异性,是因为它的平行轴(长轴)的介电常数是小于垂直轴(短轴)的。所以就会得到光程差为负值的情况。
37、38、当我们施加电场,最终就可以得到这种排列方式。
在这种模式下,电极是在玻璃的表面。这种电极的材料称为ITO,这种材是透明的,所以它不阻挡光波穿过它,就不会影响到开口率。这种和前面提到的TN型是一样的。
39、总结一下,MVA模式中和IPS模式一样有很好的视角,而且它的开口率很好。所以我们可以通过传输特性曲线来总结所有这三种具有商业价值的技术。
看这个电光特性曲线上三种不同显示模式下,透射过的光波与电压的均方值之间的关系。 其中红色的曲线是TN型的。这是一种常亮型显示,不加电场时是透光的,而当电场逐渐增大时,会慢慢变暗。有低电压驱动TN型,有较高电压驱动TN型,也有光学薄膜补偿的TN型(FCTN)。这是一种重要的显示器,在笔记本电脑和15英寸、17英寸的显示器中,它的应用十分广泛。对于大屏幕价格更加昂贵的制造是用IPS或MVA技术。在这幅图中说明了IPS技术需要比较高的电压,因为它的两个电极间的距离要大于TN或MVA技术中电极间的距离。同时由于它的开口率较低,需要更亮的背光灯。MVA技术是一种居中的情况,它的视角要好于TN型但在某些灰阶中不如IPS,某些灰阶的稳定性不如IPS。这些就是这三种不同的模式,它们的开口率和电光特性曲线。
40、最后再来看一下有源矩阵。如前所述,我们有了一个显示器,可以控制亮度,可以由红、绿、蓝三色组成一个象素,最后需要有一个有源矩阵来驱动,就像这副图所示。这里有行驱动和列驱动,可以单独的对R/G/B寻址,可以单独的控制每一个R/G/B三个子象素的亮度,这样就做成了一个全彩色的显示器。
41、总结一下,向列型液
上一页 [1] [2] [3] [4] [5] [6] 下一页
需要技术服务: 李师傅电话18277394428
本文相关图纸、数据下载,IC资料下载,总线进入方式海信TLM40V68P(2)系列液晶(RSAG7.820.1673板)电源
海信RSAG7.820.1032板(TLM32E58/N5Z1电源板)原理图
海信LED42T39AK系列液晶(RSAG7.820.4489 ROH板)电源
海信LED42K300系列液晶(RSAG7.820.5024 ROH板)电源电
海信LED42K01P系列液晶(RSAG7.820.4543板)电源电路原
海信LED32K311系列液晶(4721板)主板电路原理图_液晶
海信LED32K10系列液晶(RSAG7.820.4665板)电源电路原
海信LED32K01系列液晶(RSAG7.820.4555 ROH板)电源电
海信 HDP2977M HISENSE RSAG7 820 503-1 MM502 RB5714
海信 TF2982D hisense H99A2 5H32-3DV3 24C16 TB1238N
海信TF2582D(5H32-3DV3 TB1238 24C16)_彩电EPROM数据
海信 TPW32V69等离子 RSAG7.820.1477 ROH VER.B 24C32
海信 HDP2977M HISENSE RSAG7 820 503-1 MM502 RB5714
海信 HDP3419H RSAG7 820 403 V1 1 HISENSE-DTV-004(
海信tf3488g-24c08(h2000b 5ae5-3e98)彩电数据