23、从这副图可以看到液晶分子对准取向层,并没有扭曲。但是你可以想象到经过摩擦的取向层使液晶层能够顺着取向槽排列。两个表面有45°的交叉,所以偏振角度与液晶分子的夹角是45°。所以光波射入液晶层后,由于顺着长轴振动的分量和顺着短轴振动的分量的不同,使得偏振面旋转了90°。当光波通过底部透过液晶层后,随着偏光片方向的不同,光波要么透过要么停止。由于我们让上、下两个偏光片的方向相互垂直,当光波通过液晶层被旋转了90°后,通过了第二个偏光片,这种模式成为常亮模式。这种模式下,在未加电场的情况下,液晶分子处于稳态位置,它将光波旋转了90°,让光波通过。
24、在另外一种状态下,当我在两层偏光片之间加上电场之后,就可以使液晶分子竖直起来,垂直于偏光片。这样,就不会发生双折射,进入液晶层的光波就不会发生旋转。由于光波的偏振面没有发生旋转,所以光波在通过液晶层到达第二个偏光片后就会被完全吸收,这样从外面看来就是暗场。所以我们就得到了两种情况,第一种情况下,光波透过,是亮场;第二种情况下,光波被吸收,是暗场。由此我们就可以做成一个显示器件了,可以对显示器上的某个区域进行控制,让它透过或吸收,让它变成亮场或暗场。通过R、G、B滤色片,我们就可以通过吸收不同波长的光波,来显示出不同色彩,让液晶显示器不仅能够显示黑和白,还能够显示出不同的颜色。另外当我们可以寻找到一些中间点,可以是一部分光波被旋转而另一部分不旋转,就可以作出有不同灰阶的显示器。
25、现在让我们回头仔细看一下扭曲向列型液晶。如前所述,将取向层摩擦后,靠近它的液晶就会顺着它排列。在另外一端,将摩擦的方向垂直于前一层,靠近这一层的液晶会顺着这个方向排列。而液晶分子就会在两层之间自动的旋转90°。
另外要做的一件事就是要在取向层上设置一定的预倾角。回顾刚才讲的分子的转动状况,为了让沿着长轴和短轴的分量的合力能够使分子转动,需要使分子的初始角度与电场间的角度不是零。这个预倾角不仅起这个作用,还可以使液晶分子能够更快的对电场响应。
26、扭曲向列型液晶是显示器件的一个创新,但它并不完美,它的视角并不好,如果能够使它的视角有所改善,它将会有更多的应用。但是这正是扭曲向列型相对于非扭曲向列型的功能差别所在,它产生了宽视角。如果我们将视角看为一种功能,
视角,就是指当你可以正常观看画面的角度,当你超过这个角度去观看,就会发现本来的亮画面变暗了;本来的暗画面变亮了。同样,灰阶也会变化,不再是你想要呈现的那个灰阶了。这是液晶一个不受欢迎的特点。
由于它平面显示、高亮度以及全彩色的特点,液晶显示是一种很好的显示器。但由于它的视角问题使得它并不理想。我们可以通过损失垂直视角来改进水平视角。对同一个显示器,当观察点在垂直方向移动时,会有不同的效果。将显示器垂直向上移动时,所有中间灰阶和最暗阶的亮度都会升高,但不包括最亮阶。也就是说,将显示器下移,所有灰阶会变暗;将显示器上移,所有灰阶会变亮。所以,随着视角的变化,会有很大的亮度不稳定性,这是由对显示器的定向来决定。我们可以通过损失垂直视角来增大水平视角。如果你有笔记本电脑,你会注意到这个特性的。如果我将笔记本电脑放的很低,画面会很暗;而当我将它抬高后,会变亮。这样可以得到一个比较满意的适中的角度。
液晶的视角是一个重要的特性,因为它的存在,限制了它在许多场合的应用。
它能够比较好的应用于笔记本电脑。如果没有这种全彩色平板显示器件,就很难做出这么小的电脑来。所以不得不在这方面做出一些让步. 但是,当我们想做大尺寸的显示器或者大屏幕的液晶电视的时候,那些非常挑剔的人就会说:“我想要一个高质量的显示器”。
28、这个是观看时合适的距离,18英寸或者20英寸。大屏幕的会有一个完全不同的视角。这个视角意味着做不到――对于每种颜色、每个点来说,做的完全一样的亮度是不可能的。因为彩色是由R/G/B三基色组成的,当视角增加时,很难让每种颜色保持稳定,所以不同视角的亮度一致性差会带来颜色的失真。为了补偿这种不稳定性进行了许多的努力。
29、我们先对怎样进行改进了解一点原理。对于液晶来说,在不同的视角下会有不同的光学路径。我们想做的就是使不同视角下的光学路径相同,就是让不同视角下光波的偏振面相同,就得到了一个均匀的显示器。
具体实施的,就是构建一个与TN型互补的结构与TN型一前一后的排列。如图中所示,将一个左手扭曲型和一个右手扭曲型结合起来,就可以得到互相补偿,消除了视角问题。
但是,在上面一层和下面一层间的界面不可能无限制的变薄。它是由两层玻璃组成的,在不加层的情况下是无法使液晶变厚的。当它工作时,必须经过一段较长的距离,要想从中得
上一页 [1] [2] [3] [4] [5] [6] 下一页
需要技术服务: 李师傅电话18277394428
本文相关图纸、数据下载,IC资料下载,总线进入方式海信TLM40V68P(2)系列液晶(RSAG7.820.1673板)电源
海信RSAG7.820.1032板(TLM32E58/N5Z1电源板)原理图
海信LED42T39AK系列液晶(RSAG7.820.4489 ROH板)电源
海信LED42K300系列液晶(RSAG7.820.5024 ROH板)电源电
海信LED42K01P系列液晶(RSAG7.820.4543板)电源电路原
海信LED32K311系列液晶(4721板)主板电路原理图_液晶
海信LED32K10系列液晶(RSAG7.820.4665板)电源电路原
海信LED32K01系列液晶(RSAG7.820.4555 ROH板)电源电
海信 HDP2977M HISENSE RSAG7 820 503-1 MM502 RB5714
海信 TF2982D hisense H99A2 5H32-3DV3 24C16 TB1238N
海信TF2582D(5H32-3DV3 TB1238 24C16)_彩电EPROM数据
海信 TPW32V69等离子 RSAG7.820.1477 ROH VER.B 24C32
海信 HDP2977M HISENSE RSAG7 820 503-1 MM502 RB5714
海信 HDP3419H RSAG7 820 403 V1 1 HISENSE-DTV-004(
海信tf3488g-24c08(h2000b 5ae5-3e98)彩电数据