打印本文 打印本文  关闭窗口 关闭窗口  
基于DSP+μC/OS-Ⅱ的励磁系统的研究来源于瑞达科技网
作者:佚名  文章来源:不详  点击数  更新时间:2011/12/29   文章录入:瑞达  责任编辑:瑞达科技

同步电动机的磁场采用直流励磁,功率因数可以超前、滞后或单位功率因数,运行中可以向电网馈送无功功率,改善电网功率因数,并且具有运行稳定性好、转速不随负载变化而改变和运行效率高等特点,因此在煤矿等工业现场应用广泛。而同步电动机励磁对于同步电动机的运行起到重要作用,传统励磁系统采用晶闸管移相全桥电路实现励磁。该励磁系统需要用到同步变压器定相,涉及器件较多,维护复杂,影响了励磁系统的安全运行,而且传统的嵌


同步电动机的磁场采用直流励磁,功率因数可以超前、滞后或单位功率因数,运行中可以向电网馈送无功功率,改善电网功率因数,并且具有运行稳定性好、转速不随负载变化而改变和运行效率高等特点,因此在煤矿等工业现场应用广泛。而同步电动机励磁对于同步电动机的运行起到重要作用,传统励磁系统采用晶闸管移相全桥电路实现励磁。该励磁系统需要用到同步变压器定相,涉及器件较多,维护复杂,影响了励磁系统的安全运行,而且传统的嵌入式设计在软件管理上采用单任务的顺序机制,系统稳定性实时性差。

本文提出采用美国德州仪器公司(TI)的数字信号处理器芯片TMS320LF2812作为控制核心,将实时操作系统DSP+μC/OS-Ⅱ,应用于DSP的程序设计中,以次级有源钳位开关的零电压零电流开关(ZVZCS)DC/DC移相变换全桥电路为主电路,将系统的多个核心任务由DSP+μC/OS-Ⅱ进行调度并行执行,完成3种形式励磁电流的闭环控制,为同步机励磁系统嵌入式设计提供一个理想的设计方案。

1 总体结构

励磁系统总体结构框图如1所示。包括零电压零电流开关(ZVZCS)DC/DC移相变换全桥电路、驱动电路、灭磁电路、励磁电压、电流调理电路、DSP控制电路、键盘及显示电路、跳闸保护电路等。

打印本文 打印本文  关闭窗口 关闭窗口